451 research outputs found

    GASP : Geometric Association with Surface Patches

    Full text link
    A fundamental challenge to sensory processing tasks in perception and robotics is the problem of obtaining data associations across views. We present a robust solution for ascertaining potentially dense surface patch (superpixel) associations, requiring just range information. Our approach involves decomposition of a view into regularized surface patches. We represent them as sequences expressing geometry invariantly over their superpixel neighborhoods, as uniquely consistent partial orderings. We match these representations through an optimal sequence comparison metric based on the Damerau-Levenshtein distance - enabling robust association with quadratic complexity (in contrast to hitherto employed joint matching formulations which are NP-complete). The approach is able to perform under wide baselines, heavy rotations, partial overlaps, significant occlusions and sensor noise. The technique does not require any priors -- motion or otherwise, and does not make restrictive assumptions on scene structure and sensor movement. It does not require appearance -- is hence more widely applicable than appearance reliant methods, and invulnerable to related ambiguities such as textureless or aliased content. We present promising qualitative and quantitative results under diverse settings, along with comparatives with popular approaches based on range as well as RGB-D data.Comment: International Conference on 3D Vision, 201

    3D Scene Graph Prediction on Point Clouds Using Knowledge Graphs

    Full text link
    3D scene graph prediction is a task that aims to concurrently predict object classes and their relationships within a 3D environment. As these environments are primarily designed by and for humans, incorporating commonsense knowledge regarding objects and their relationships can significantly constrain and enhance the prediction of the scene graph. In this paper, we investigate the application of commonsense knowledge graphs for 3D scene graph prediction on point clouds of indoor scenes. Through experiments conducted on a real-world indoor dataset, we demonstrate that integrating external commonsense knowledge via the message-passing method leads to a 15.0 % improvement in scene graph prediction accuracy with external knowledge and 7.96%7.96\% with internal knowledge when compared to state-of-the-art algorithms. We also tested in the real world with 10 frames per second for scene graph generation to show the usage of the model in a more realistic robotics setting.Comment: accepted at CASE 202

    Measurement errors in visual servoing

    Get PDF
    Abstract β€” In recent years, a number of hybrid visual servoing control algorithms have been proposed and evaluated. For some time now, it has been clear that classical control approaches β€” image and position based β€”- have some inherent problems. Hybrid approaches try to combine them in order to overcome these problems. However, most of the proposed approaches concentrate mainly on the design of the control law, neglecting the issue of errors resulting from the sensory system. This work deals with the effect of measurement errors in visual servoing. The particular contribution of this paper is the analysis of the propagation of image error through pose estimation and visual servoing control law. We have chosen to investigate the properties of the vision system and their effect to the performance of the control system. Two approaches are evaluated: i) position, and ii) 2 1/2 D visual servoing. We believe that our evaluation offers a valid tool to build and analyze hybrid control systems based on, for example, switching [1] or partitioning [2]. I
    • …
    corecore